Product Description
Customized V-shaped Hard Teeth Transmission Double Helical Spur Gear for Gear Motor and Gearbox
Product Description
Double Helical Gear
A Double Helical Gear is another name for a herringbone gear (a side by side combination of 2 helical gears of opposite hands).
Double Helical Pinion
A Double Helical Pinion (or a herringbone pinion) is a cylinder with external involute radial teeth that spiral around the circumference from each end to meet angles forming a “v” in the center. The most popular helix angle is 30 in a Double helical pinion. Often there is a groove between the 2 sets of teeth. Double helical and herringbone are 2 names for the same type of gear. Herringbone usually refers to a gear or pinion with a 30 helix angle with a minimal groove between the sets of teeth (usually about 1/2″ or so) or no groove at all. Double helical usually refers to a gear with a very wide groove between the 2 sets of teeth (maybe 2″ or 4″ or even more) and usually with some other helix angle other than 30 (often an odd helix angle (not an even angle) like ″ or whatever). Double helical pinion can be made from customer-supplied materials, as well as materials provided by CHINAMFG Metallurgy Manufacturing .
Baoxin Metallurgy Manufacturing can custom manufacture your helical gear and pinion for many application.
If you are looking for custom made manufacturing services of gearmotors, gearbox,gear transmission machine etc, contact us for more information to schedule your service.
Detailed Photos
Product Recommendation
Product Display |
Other Products |
Our Advantages
Certifications
Company Profile
HangZhou CHINAMFG Metallurgy Equipment Manufacturing Co., Ltd. is a high-tech enterprise registered in HangZhou City of ZheJiang Province, which is mainly engaged in the design and manufacture of spare parts for metallurgy equipment, hoisting machinery, oil drilling rigs, and heavy decelerator boxes.
Our company boasts a professional team who is full of vitality, with high efficiency, and industry minded. Our R& D technicians are highly skilled with rich experience, and possess strong design and development capabilities. There are 2 experts in our company who enjoy the state special allowance. We have carried out broad cooperation with renowned factories and design institutes both at home and abroad.
With advanced design, outstanding manufacturing crafts and vigorous management, the whole manufacturing process of our company is conducted by strictly implementing strict quality management system. Our products are widely used by a great number of steel plants in China and exported overseas, where they have received high praise from our customers.
By following the enterprise philosophy of innovation, quality and creating value for the clients, our company is constantly bringing in advanced technologies from home and abroad. We are committed to taking the enhancement of product quality, safety and reliability as our responsibility and striving for providing high quality products and perfect services to the clients.
HangZhou CHINAMFG Metallurgy Equipment Manufacturing Co., Ltd. Warmly welcomes you to be our distinguished clients and friends.
Packaging & Shipping
Service & FAQ
Our Service:
If you are interested in any of our products, please contact me freely! Warmly Welcomed your visit to our factory in China, OEM service will be ok.
FAQ:
Q: What information should I provide if I want to order the products?
1) Product information: Quantity, specification
2) Delivery time required.
3) Shipping information: Company name, address, phone number, destination seaport/air port.
4) Forwarder’s contact details if there is any in China.
Q: How about your payment terms?
A: 30% -50%deposit, with the balance before delivery, we accept T/T and L/C at sight.
Q: Can I use our own logo?
A: Yes, we can produce by using your own logo if you need.
Q: How about sample & MOQ policy?
A: Welcome sample order. MOQ can be 1 set.
Q: What is your lead time for your goods?
A: Normally 30 days after confirmed order,
Application: | Motor, Machinery, Marine, Agricultural Machinery, Gear Reducer,Gear Motor,Gearbox,Gear Transmission |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Double Helical Gear |
Material: | 42CrMo |
Customization: |
Available
| Customized Request |
---|
Can spur gears be used in heavy-duty machinery and equipment?
Yes, spur gears can be used in heavy-duty machinery and equipment. Here’s a detailed explanation:
Spur gears are versatile and commonly used in a wide range of applications, including heavy-duty machinery and equipment. They are known for their simplicity, efficiency, and ability to transmit high loads and torque. Spur gears have straight teeth that are parallel to the gear axis, allowing for effective power transmission between parallel shafts.
Advantages of Spur Gears in Heavy-Duty Applications:
Spur gears offer several advantages that make them suitable for heavy-duty machinery and equipment:
- High Load Capacity: Spur gears are capable of handling high loads due to their robust tooth design and larger contact area compared to other gear types. They distribute the load evenly across the gear teeth, minimizing stress concentration and ensuring reliable operation in heavy-duty applications.
- Efficient Power Transmission: Spur gears have high gear meshing efficiency, typically above 95%. This means that a large percentage of the input power is effectively transmitted to the output, making them suitable for heavy-duty machinery where power transfer is critical.
- Wide Range of Sizes and Ratios: Spur gears are available in a wide range of sizes, tooth counts, and gear ratios. This versatility allows for customization and adaptation to the specific requirements of heavy-duty machinery and equipment.
- Cost-Effective: Spur gears are relatively simple in design and easier to manufacture compared to some other gear types. This simplicity often translates into cost-effectiveness, making them an attractive choice for heavy-duty applications where cost considerations are important.
- Easy Maintenance: Spur gears are generally easier to maintain compared to gears with complex tooth profiles or specialized designs. Routine maintenance tasks such as lubrication, inspection, and replacement of worn gears can be carried out more straightforwardly, minimizing downtime and maintenance costs.
Considerations for Heavy-Duty Applications:
While spur gears can be used in heavy-duty machinery and equipment, certain considerations should be taken into account:
- Load Distribution: Proper load distribution is critical to ensure the longevity and reliability of spur gears in heavy-duty applications. It is important to design the gear system in a way that distributes the loads evenly across the gear teeth, minimizing the risk of tooth breakage or premature wear.
- Material Selection: The selection of gear materials is crucial in heavy-duty applications. The gear material should have the necessary strength, hardness, and fatigue resistance to withstand the anticipated loads and operating conditions. Common materials used for heavy-duty spur gears include alloy steels, case-hardened steels, and specialized gear materials such as carburized or nitrided steels.
- Lubrication and Cooling: Adequate lubrication is essential to minimize friction, wear, and heat generation in heavy-duty spur gears. Proper lubrication techniques and the use of high-quality lubricants can significantly extend the gear’s service life. In some cases, additional cooling measures such as circulating oil systems or forced-air cooling may be necessary to manage heat buildup in heavy-duty applications.
- Mechanical Considerations: The overall mechanical design of the heavy-duty machinery should account for gear alignment, shaft deflection, and other factors that can affect gear performance. Robust support structures, accurate alignment, and consideration of potential misalignments due to operational conditions should be taken into account during the design phase.
By addressing these considerations and implementing proper design, material selection, lubrication, and maintenance practices, spur gears can effectively withstand the demands of heavy-duty machinery and equipment.
It’s important to note that the specific application requirements, operating conditions, and load characteristics may vary. Consulting with gear manufacturers, engineers, or industry experts can provide further guidance on the suitability and design considerations when using spur gears in heavy-duty applications.
What is the lifespan of a typical spur gear?
The lifespan of a typical spur gear can vary significantly depending on several factors. Here’s a detailed explanation:
The lifespan of a spur gear is influenced by various factors, including:
- Operating Conditions: The conditions under which the spur gear operates greatly impact its lifespan. Factors such as the magnitude and frequency of the applied loads, operating temperature, speed, and lubrication quality play a significant role. Gears operating under heavy loads, high speeds, or harsh environments may experience higher wear and fatigue, potentially reducing their lifespan.
- Material Selection: The material used for constructing the spur gear affects its durability and lifespan. Spur gears are commonly made from materials such as steel, cast iron, bronze, or polymer composites. The specific material properties, including hardness, strength, and resistance to wear and corrosion, influence the gear’s ability to withstand the operating conditions and determine its lifespan.
- Quality of Manufacturing: The quality of manufacturing processes and techniques employed during the production of the spur gear can impact its lifespan. Gears manufactured with precision, accurate tooth profiles, and proper heat treatment are more likely to have longer lifespans compared to those with manufacturing defects or poor quality control.
- Lubrication and Maintenance: Proper lubrication is crucial for reducing friction, wear, and heat generation in spur gears. Regular maintenance practices, including lubricant replacement, gear inspections, and addressing any issues promptly, can significantly extend the lifespan of the gears. Inadequate lubrication or neglecting maintenance can lead to premature wear and failure.
- Load and Stress Distribution: The design and configuration of the gear system affect the load and stress distribution on the spur gears. Proper gear design, including tooth profile, number of teeth, and gear arrangement, helps ensure even load distribution and minimizes localized stress concentrations. Well-designed supporting components, such as bearings and shafts, also contribute to the overall lifespan of the gear system.
It is challenging to provide a specific lifespan for a typical spur gear since it depends on the aforementioned factors and the specific application. Spur gears can have lifespans ranging from several thousand to millions of operating cycles. Industrial gear systems often undergo regular inspections and maintenance, including gear replacement when necessary, to ensure safe and reliable operation.
It’s important to note that gear lifespan can be extended through proper care, maintenance, and adherence to recommended operating parameters. Regular inspections, monitoring of gear performance, and addressing any signs of wear or damage promptly can help maximize the lifespan of spur gears.
When assessing the lifespan of spur gears for a particular application, it is advisable to consult manufacturers, industry standards, and experts with expertise in gear design and maintenance for accurate estimations and recommendations.
How do spur gears differ from other types of gears?
Spur gears, as a specific type of gear, possess distinct characteristics and features that set them apart from other types of gears. Here’s a detailed explanation of how spur gears differ from other types of gears:
- Tooth Geometry: One of the primary differences lies in the tooth geometry. Spur gears have straight teeth that are cut parallel to the gear axis. This differs from other gear types, such as helical gears or bevel gears, which have angled or curved teeth.
- Gear Meshing: Spur gears mesh by direct contact between their teeth, creating a line or point contact. This meshing arrangement is different from other gear types, such as worm gears or planetary gears, where the teeth mesh in a different manner, such as through sliding contact or multiple points of contact.
- Direction of Force: Spur gears transmit rotational motion and torque in a specific direction. The force is transmitted along the axis of the gears, making them suitable for parallel shaft arrangements. In contrast, other types of gears, such as bevel gears or hypoid gears, can transmit motion between non-parallel or intersecting shafts.
- Noise and Vibration: Spur gears tend to produce more noise and vibration compared to certain other gear types. The direct contact between the teeth and the sudden engagement/disengagement of the teeth can generate impact forces, leading to noise and vibration. In contrast, gear types like helical gears or double-enveloping worm gears provide smoother meshing and reduced noise levels.
- Efficiency and Load Distribution: Spur gears generally offer high efficiency in power transmission due to their direct tooth engagement. However, they may experience higher stress concentrations and load concentrations compared to other gear types. Gear designs like helical gears or planetary gears can distribute the load more evenly across the teeth, reducing stress concentrations.
- Applications: Spur gears find widespread applications in various industries and equipment. Their simplicity, ease of manufacture, and cost-effectiveness make them suitable for a wide range of systems. Other gear types have specific applications where their unique characteristics, such as high torque transmission, precise motion control, or compact size, are advantageous.
In summary, spur gears differ from other types of gears in terms of tooth geometry, gear meshing, direction of force transmission, noise and vibration characteristics, load distribution, and specific applications. Understanding these differences is crucial when selecting the appropriate gear type for a particular mechanical system, considering factors such as load requirements, motion control, efficiency, and design constraints.
editor by CX 2023-09-18