Product Description
We are looking CHINAMFG to work together with you and we hope to build extensive cooperative relationship with you, please do not hesitate to contact us.
Outboard model brand | HONDA, SUZUKI, YAMAHA, MERCURY |
Outboard part model | 9.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP |
We are professional outboard engine parts supplier,we can supply variousparts:gears,shafts,gaskets,carburetors,propellor,bearing,and so on.
61A-W0078-0A-00 | Water Pump Repair Kit | 1993-1996 150, 175, 200, 225, 250 HP |
61A-W0078-00-00 | Water Pump Repair Kit | 1997-2000 150, 175, 200 HP |
61A-W0078-W/H | Water Pump Repair Kit | 150, 175, 200 HP |
61N-W0078-01-00 | Water Pump Repair Kit | 1997 30 HP |
63D-W0078-01-00 | Water Pump Repair Kit | 40, 50, 60 HP |
63V-W0078-01-00 | Water Pump Repair Kit | 9.9, 15 HP |
65G-W0078-00-00 | Water Pump Repair Kit | 9.9, 15 HP |
663-W0078-01-00 | Water Pump Repair Kit | 1992-1995 55 HP |
66T-W0078-00-00 | Water Pump Repair Kit | 25, 30, 40 HP |
670-W0078-00-00 | Water Pump Repair Kit | 1995-1999 48 HP |
676-W0078-00 | Water Pump Repair Kit | 40 HP |
679-W0078-A1-00 | Water Pump Repair Kit | 40 HP |
682-W0078-00 | Water Pump Repair Kit | 9.9, 15 HP |
688-W0078-00 | Water Pump Repair Kit | 75, 85, 90 HP |
692-W0078-00-00 | Water Pump Repair Kit | 60-90 HP |
696-W0078-00 | Water Pump Repair Kit | 48 HP |
6B4-W0078-0A | Water Pump Repair Kit | 9.9 HP |
6E5-W0078-00-00 | Water Pump Repair Kit | 115 HP |
6F5-W0078-00 | Water Pump Repair Kit | 40 HP |
6F6-W0078-A0 | Water Pump Repair Kit | 40 HP |
6G0-W0078-00 | Water Pump Repair Kit | 25 HP |
6G5-W0078-00-00 | Water Pump Repair Kit | 1987-1988 150, 175, 200 HP |
6H3-W0078-00-00 | Water Pump Repair Kit | 1984-1991 60, 70 HP |
6H4-W0078-A0-00 | Water Pump Repair Kit | 40, 50 HP |
6N6-W0078-02-00 | Water Pump Repair Kit | 115, 130 HP |
YAMAHA, SUZUKI, TOHATSU/NISSAN, HONDA, etc outboard brands.
Our marine outboard parts contains crankshaft, crank pin, cylinder liner, diaphragm, fuel filter, mount damper, shaft, spacer, spark plugs, starter, gear, pinion, gasket, gasket kit, impeller, key woodruff, propeller, piston, primary pump, clutch dog ,carburetor repair kit, bracket, upper casing, lower casing, repair kit, washer, bolt ,pin, spring, float, tube, clamp, bearing, seal, o-ring, cartridge, tab-trim , bushing, cable, connector, coil ignition, CDI unit, water pump, collar, condenser, etc.
Application: | Motor |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | Internal Gear |
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Spur Gear |
Material: | Cast Steel |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can spur gears be used in automotive applications?
Yes, spur gears can be used in automotive applications. Here’s a detailed explanation:
Spur gears are one of the simplest and most commonly used types of gears. They consist of cylindrical teeth that are parallel to the gear axis and mesh with each other to transmit power and motion. While other gear types like helical gears or bevel gears are often preferred in certain automotive applications, spur gears still find their place in various automotive systems and components.
1. Transmissions:
Spur gears are commonly found in manual transmissions, especially in lower gears. They are used to achieve a direct and efficient power transfer between the engine and the wheels. Spur gears in transmissions are designed to handle high torque loads and provide reliable performance.
2. Differential:
In automotive differentials, which distribute power between the wheels while allowing them to rotate at different speeds, spur gears are often employed. They are used in the differential gear train to transfer torque from the driveshaft to the wheels. The simplicity and robustness of spur gears make them suitable for this application.
3. Starter Motors:
Spur gears are commonly used in starter motors to crank the engine when starting a vehicle. They provide high torque and efficient power transmission to rotate the engine’s crankshaft and initiate the combustion process. Starter motor spur gears are designed to handle the initial load and engage smoothly with the engine’s flywheel.
4. Timing Systems:
In automotive timing systems, where precise synchronization of engine components is crucial, spur gears can be used. They are employed in timing belts or chains to drive the camshafts, ensuring proper valve timing and engine performance. Spur gears in timing systems contribute to accurate and reliable engine operation.
5. Accessories and Auxiliary Components:
Spur gears are also utilized in various automotive accessories and auxiliary components. They can be found in power window mechanisms, windshield wipers, power steering systems, and other mechanisms that require controlled and synchronized motion. Spur gears provide cost-effective and efficient power transmission for these applications.
It’s important to note that while spur gears have their advantages, they also have certain limitations. They can generate more noise and vibration compared to gears with helical or bevel tooth profiles. Additionally, spur gears are not as suitable for high-speed or high-torque applications as other gear types.
Overall, spur gears have a significant presence in automotive applications, particularly in manual transmissions, differentials, starter motors, timing systems, and various auxiliary components. Their simplicity, reliability, and cost-effectiveness make them a viable choice for specific automotive gear applications.
How do you maintain and service a spur gear system?
Maintaining and servicing a spur gear system is crucial to ensure its optimal performance, longevity, and reliability. Here’s a detailed explanation of how to maintain and service a spur gear system:
- Regular Inspection: Perform regular inspections of the spur gear system to identify any signs of wear, damage, misalignment, or abnormal operating conditions. Inspect the gear teeth, shafts, bearings, and housing for any visible issues. Pay attention to unusual noises, vibrations, or changes in gear performance. Early detection of problems allows for timely intervention and prevents further damage.
- Cleaning: Keep the spur gear system clean by removing any dirt, debris, or contaminants that may accumulate on the gear surfaces or within the gear housing. Use appropriate cleaning methods such as brushing, wiping, or blowing with compressed air. Avoid using harsh chemicals that may damage the gear components or compromise lubrication.
- Lubrication: Ensure proper lubrication of the spur gear system as per the manufacturer’s recommendations. Regularly check the lubricant levels and condition. Monitor viscosity, contamination levels, and oxidation of the lubricant. Replenish or replace the lubricant as necessary to maintain optimal gear lubrication and protection against wear.
- Alignment Check: Periodically check the shaft alignment of the gear system to ensure proper alignment. Misaligned shafts can result in increased wear, noise, and reduced gear efficiency. Use alignment tools such as dial indicators or laser alignment systems to verify and adjust the shaft alignment if needed.
- Torque and Fastener Check: Check the torque of fasteners, including bolts, set screws, and retaining rings, to ensure they are properly tightened. Loose fasteners can lead to gear misalignment and compromised performance. Follow the manufacturer’s recommended torque values for the specific gear system components.
- Replacement of Worn Components: Over time, gear components such as gear teeth, bearings, or shafts may wear out or become damaged. Replace any worn or damaged components promptly to prevent further issues and maintain the gear system’s functionality. Use genuine replacement parts recommended by the gear manufacturer.
- Monitoring Operating Conditions: Monitor the operating conditions of the gear system, including temperature, load, and speed. Ensure that the gear system operates within the specified limits and does not exceed the design parameters. Excessive heat, overloading, or high-speed operation can accelerate wear and reduce gear life.
- Training and Expert Support: Ensure that personnel responsible for maintaining and servicing the spur gear system receive proper training and have access to expert support. Familiarize yourself with the gear system’s documentation, including maintenance manuals, technical specifications, and troubleshooting guides. Consult with gear manufacturers or specialists for guidance on specific maintenance procedures or complex issues.
Developing a regular maintenance schedule and keeping accurate records of maintenance activities can help ensure consistent and effective servicing of the spur gear system. Adhering to recommended maintenance practices and addressing any identified issues promptly will help optimize the performance, reliability, and service life of the gear system.
It’s important to note that maintenance and servicing procedures may vary depending on the specific gear system, application, and manufacturer’s recommendations. Therefore, always refer to the gear system’s documentation and consult with the manufacturer for detailed maintenance instructions.
How do spur gears contribute to power transmission?
Spur gears play a crucial role in power transmission due to their specific design and tooth engagement. Here’s a detailed explanation of how spur gears contribute to power transmission:
- Direct Tooth Engagement: Spur gears have straight teeth that mesh directly with each other. This direct tooth engagement ensures efficient transfer of power from one gear to another. As the driving gear rotates, its teeth come into contact with the teeth of the driven gear, enabling the transfer of rotational motion and torque.
- Uniform Load Distribution: The teeth of spur gears distribute the transmitted load evenly across the gear surfaces. The straight, parallel teeth provide a larger contact area compared to other gear types, resulting in improved load-carrying capacity and reduced stress concentration. This uniform load distribution helps prevent premature wear and failure of the gears, ensuring reliable power transmission.
- Efficiency: Spur gears are known for their high efficiency in power transmission. The direct tooth engagement and parallel shaft arrangement minimize energy losses during rotation. The teeth mesh smoothly, resulting in minimal friction and reduced power dissipation. This efficiency is beneficial in applications where maximizing power transfer and minimizing energy waste are crucial.
- Speed and Torque Conversion: Spur gears allow for speed and torque conversion between the driving and driven shafts. By using gears with different numbers of teeth, the rotational speed and torque can be adjusted to match the requirements of the application. For example, a small gear driving a larger gear will result in a higher torque output at a lower speed, while a larger gear driving a smaller gear will result in a higher speed output at a lower torque.
- Directional Control: The arrangement of spur gears can be used to control the rotational direction of the driven shaft relative to the driving shaft. By meshing gears with opposite orientations (e.g., one gear with clockwise teeth and another gear with counterclockwise teeth), the direction of rotation can be reversed. This directional control is essential in applications where the desired motion needs to be reversed or changed.
- Multiple Gear Configurations: Spur gears can be combined in various configurations to form gear trains, allowing for complex power transmission systems. Gear trains consist of multiple gears meshing together, with each gear contributing to the overall power transmission. Gear trains can alter speed, torque, and direction, providing flexibility in adapting power transmission to specific requirements.
- Compatibility with Other Components: Spur gears are compatible with a wide range of other mechanical components, such as shafts, bearings, and housings. This compatibility allows for easy integration into different systems and machinery. Spur gears can be mounted on shafts using keyways, set screws, or other mounting methods, ensuring secure and reliable power transmission.
Overall, spur gears are essential in power transmission systems due to their direct tooth engagement, uniform load distribution, high efficiency, speed and torque conversion capabilities, directional control, compatibility with other components, and the ability to form complex gear trains. These characteristics make spur gears a versatile and widely used choice for transmitting power in various applications across industries.
editor by CX 2023-09-12